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Abstract
We studied the diffusion process of random walkers in networks formed by
their traces. This model considers the rise and fall of links determined by the
frequency of transports of random walkers. In order to examine the relation
between the formed network and the diffusion process, a situation in which
multiple random walkers start from the same vertex is investigated. The
difference in diffusion rate of random walkers according to the difference
in dimension of the initial lattice is very important for determining the time
evolution of the networks. For example, complete subgraphs can be formed
on a one-dimensional lattice while a graph with a power-law vertex degree
distribution is formed on a two-dimensional lattice. We derived some formulae
for predicting network changes for the 1D case, such as the time evolution
of the size of nearly complete subgraphs and conditions for their collapse.
The networks formed on the 2D lattice are characterized by the existence of
clusters of highly connected vertices and their life time. As the life time of such
clusters tends to be small, the exponent of the power-law distribution changes
from γ � 1–2 to γ � 3.

PACS numbers: 89.75.Fb, 05.40.Fb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The description of the essential features of real networks has been of great interest since the
recognition of the so-called complex networks. The properties of complex networks such as
small-world phenomena and scale-free vertex degree distribution can often be found in various
systems and have an important role to fulfil their functions. Therefore various systems such
as social networks, biology systems and networks in the Internet can be studied by unified
methods based on the structure of complex networks (for reviews see [1–4]).

1751-8113/08/235005+18$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/23/235005
http://stacks.iop.org/ JPhysA/41/235005


J. Phys. A: Math. Theor. 41 (2008) 235005 N Ikeda

In network modeling, preferential attachment of new nodes to highly connected nodes
already existing in the network [5] is simple, but it is a progressive principle beyond random
linking of vertices already existing in a graph. Growing networks by attachment of new nodes
and constraints such as ageing and attractiveness of nodes are key frameworks for considering
network modeling [6–11].

On the other hand, it was found recently that the use of random walkers to determine
where new nodes attach can provide not only global (scale free, small mean vertex–vertex
distance) but also local structures of networks (strong clustering, community, assortative
mixing) [12–14]. It is significant to elucidate the mechanism to reproduce local properties of
networks [15, 16], because simple attachment of nodes hardly leads to such local properties.
Furthermore, consideration of local structure is necessary to describe real networks, for the
existence of community and assortative mixing [17–20] are found to be characteristics of real
networks such as social networks. Note that movements of random walkers are restricted
by local connections between nodes, but do not need complete information on the network.
This feature is consistent with our experiences that we tend to take action based only on the
information around ourselves.

In our previous paper, we proposed a time evolving network model, which considers the
rise and fall of links determined by the frequency of transportation of random walkers [21].
A characteristic of this model is that new connections between vertices already existing in a
regular lattice are stimulated by transportation between the lattice points without the attaching
of new vertices to the graph. This model is an extreme one that ignores growing effects by
the attaching of new vertices to networks. Nevertheless, broad degree distributions and the
small-world phenomenon can be found in this model. The detailed description of the model
is as follows (see figure 1).

For each discrete time t (t = 0, 1, 2, . . .) random graph {Gt } is transformed into {Gt+1}
by simultaneous movement of w independent random walkers on {Gt }, where {G0} is a one or
two-dimensional squared lattice. Each {Gt } consists of original lattice {G0} and edges joining
a pair of vertices in {G0}. Each edge is associated with integer ‘strength’ that evolves with
time. At initial time, each strength of edges is 1. Added edges and strength of their edges are
regulated by the following two rules. First: at each time step t, each random walker moves
with equal probability from a vertex the walker currently stays to one of directly connected
vertices by edges in {Gt }. If the nth walker’s location sequence is

{
x(n)

t

}
, then the movement

{
x(n)

t

} −→ {
x(n)

t+1

}
results in increase of strength of the edge joining between

{
x(n)

t

}
and

{
x(n)

t+1

}
,

and the creation of a new edge of strength 1 between
{
x(n)

t−1

}
and

{
x(n)

t+1

}
. If there is already

a edge between
{
x(n)

t−1

}
and

{
x(n)

t+1

}
, its strength is increased by 1 (figure 1(a)). Second: after

adding of edges and strengthen of edges at each step explained above, the strengths of all
edges are independently decreased by 1 with probability pd, and edges that attain strength 0
are removed except edges existing in the original squared lattice {G0}. Edges of strength 1
included in {G0} do not lose their strengths any further. One example of the graph formed by
the rule is indicated in figure 1(b).

In this model, the rise and fall of links determined by random transports in the system
are represented by strengths of edges, and the exception rule for edges included in {G0} is
a simple consideration for the geographical relation between elements in the system, which
has rarely been studied up to now. Nearest neighboring vertices in {G0} are always joined for
each t, while edges joining vertices far from each other in {G0} can exist at least only after a
random walker visits the two vertices accidentally.

While the topology of {Gt } attracts our interest, dynamical behavior with the movement
of random walkers and extinction of edges has a value to be studied. So far, however, we have
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Figure 1. (a) New connections between vertices in a regular lattice. If a random walker moves in
the order vertex 0, 1, 2 and 3, vertices 0 and 2 are newly joined at second time step and vertices
1 and 3 are newly joined at third time step. The strength of edges where the walker has passed
increases by 1. Multiple random walkers are independent of each other, and can pass newly created
edges (dashed lines). (b) One example of a part of the graph formed by the rule.

been concentrating on the topology of {Gt } originating only from a one-dimensional lattice.
Because it is natural to expect that highly connected vertices are created by the frequent visit
of random walkers to the vertices, the movement of random walkers should be focused on
for a more detailed study of the evolution of networks. In the present paper, in order to
study multiplier effects of a number of random walkers, we focused on a special case in
which all the walkers depart from the same vertex in a one-dimensional or two-dimensional
squared lattice, while in the previous work they departed from randomly spread sites in a
one-dimensional lattice with the periodic boundary condition. This paper considers a special
diffusion problem, but it also takes up the interesting problem of the relation between network
topology and diffusion process of the walkers that determine the rise and fall of links.

This paper is organized as follows. In section 2, some typical results for one-dimensional
cases are presented in order to highlight the characteristic points of our problem; transition from
stable structure when extinction probability pd = 0 to collapse of the structure corresponding
to the increase of pd. The structure formed when pd = 0 differs according to the dimension.
Section 3 explains two-dimensional cases that exhibit degree distribution with power law when
pd = 0. Network structures when pd = 0 described in sections 2 and 3 can be maintained
as long as an initial time interval is concerned especially when pd is small. Sections 4 and
5 discuss conditions for such maintenance of network structure of one-dimensional and two-
dimensional cases, respectively. Sufficiently large pd free random walkers from the network
formed around their starting point. This situation results in the emigration of the networks.
Section 6 examines the process leading to such an emigration by the observation of the life
time of highly connected vertices and number of vertices within a few steps from the highest
connected vertex.

2. Observation of one-dimensional case

In this section, some aspects of one-dimensional (1D) case are explained in order to describe
the characteristics of this type of network evolution. First, it should be noted that even the
movement of one walker is restricted by edges created by the past movement of the walker.
As an example of such a restriction, let us take the case where extinction probability pd is 0,
which means that the number of edges monotonously increases with time.

In figures 2(a) and (b), changes in the location of a walker with time and spatial distribution
of vertex degree on the 1D lattice are presented, respectively. Random walkers started from
the origin in the 1D lattice and wandered around the starting point in figure 2. Figures 2(a)

3
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Figure 2. Movements of random walkers. All walkers start from the origin. (a) One walker
movement (0 < t < 20 000) when pd = 0. (b) Spatial distribution of vertex degree at t = 20 000
when pd = 0. Most vertices which the walker can reach have the same degree as the number
of vertices the walker can reach. (c) Eight walkers’ movement when pd = 0 (0 < t < 20 000).
(d) Spatial distribution of vertex degree formed by eight walkers at t = 20 000 when pd = 0.
(e) Eight walkers’ movement when pd = 0.0464 (0 < t < 40 000). (f ) Spatial distribution of
vertex degree formed by eight walkers at t = 40 000 when pd = 0.0464. (g) Eight walkers’
movement when pd = 0.1536 (0 < t < 40 000). (h) Spatial distribution of vertex degree formed
by eight walkers at t = 40 000 when pd = 0.1536.

and (b) show the formation of a nearly complete subgraph after the wandering of a random
walker, as vertices that the walker can stay are joined to almost all vertices the walker has
visited in the past.

The walker can move randomly in the nearly complete subgraph but hardly escape from
it, because the vertices at the boundary of the nearly complete subgraph have many edges
incident to vertices in the nearly complete subgraph, but have only about one edge incident to
the vertices outside the nearly complete subgraph. This behavior of the walker reminds
us of free particles in a potential well, where we can observe particles in the potential
well but cannot find them outside the well. For this reason, we sometimes call subgraphs
formed by the wandering of random walkers in a certain area ‘potential well’, although this
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Figure 3. Frequency distributions of vertex degree for the 1D case. (a) Distribution for a nearly
complete subgraph. (b) Broad distribution which is observed after very slow collapse of a complete
subgraph. (c) Distribution which is observed after easy collapse of the complete subgraph.

is introduced only for an easy explanation of the situation. The potential barrier moves to the
outside slowly, since rare escapes from the well would surely make new edges on the outside
of the well.

Another interesting aspect of the movement of random walkers is their interaction. Of
course they have no direct attractive or repulsive forces, but movements of walkers affect
each other via edges created by themselves. According to the analogy to free particles in a
potential well, it is natural to expect that more than one random walker are confined to the
same potential well. Moreover, the potential well (nearly complete subgraph) has probably
widened and deepened with the gathering of random walkers in the potential well. An example
of random walkers’ behavior in a widened potential well is illustrated in figures 2(c) and (d).
These figures show that random walkers are confined to a complete subgraph widened by
themselves. However, the size of nearly complete subgraph is not proportional to the number
of random walkers.

Nearly complete subgraphs can be stabilized only when pd is small. As pd increases,
it becomes difficult to maintain the nearly complete subgraph, and broad vertex degree
distributions (see figure 3) can be observed owing to continuous extinction of edges in the
subgraph. Further increase of pd leads to easy escapes of random walkers from the potential
well. Such a situation is illustrated in figures 2(e) and (f ), in which a temporal escape of a
random walker from the potential well can be observed. Finally, the increase of pd breaks
the potential well (figures 2(g) and (h)). In this stage, the subgraph cannot be localized in
a certain area and begin to emigrate in the 1D lattice corresponding to the near-independent
movements of random walkers.

Figure 3 shows the frequency distributions of vertex degree corresponding to each case.
From the viewpoint of study of complex networks, observation of an inequality of vertex
degree as seen in figures 3(b) and (c) is more interesting than that of nearly complete subgraph
as seen in figure 3(a). Some cases need a very long time to transform a complete subgraph
into a graph with broad degree distribution (for example, figure 3(b)), because random walkers
can hardly escape from the potential well as long as the complete subgraph is maintained. On
the other hand, when pd is large enough to permit emigration of subgraphs, maximum degree
is noticeably decreased. In this way, the network structure is deeply related to the diffusion
behavior of random walkers.

In the following sections, some problems prompted by the overview of the 1D case are
examined numerically and theoretically. First, the next section explains the network structure
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Figure 4. A spatial distribution of vertex degree for the 2D case when pd = 0. Eight walkers
started from the origin and 20 000 time steps have passed.

formed on the two-dimensional lattice when pd = 0. Following the next section, changes in
the network structure corresponding to the increase of pd are explained.

3. The two-dimensional case without extinction of edges

All vertices in a two-dimensional (2D) squared lattice have degree 4 from the beginning. But
vertices that we are interested in are those with degree greater than or equal to 5 made by
a random walker’s passage. We call vertices that have edges created by random walker’s
passage, ‘vertices with created edges’ in the following discussion.

The movement of random walkers in a 2D lattice differs considerably from that in a
1D lattice. Figure 4 shows a spatial distribution of vertex degree observed when pd = 0
and w = 8, where w means the number of random walkers. Vertices with large degree are
concentrated around the starting point of the random walkers. On the other hand, vertices
with small degree are spread on the outside of the degree-rich area. This spatial distribution
contradicts that observed for the 1D case, where there is a sharp boundary of the potential
well.

Spatial distribution of degree must reflect the increase rate of created edges and vertices
with created edges. Figure 5 presents the time dependence of the number of vertices with
created edges and of the number of created edges when pd = 0. One can observe in the figure
that the number of vertices with created edges increases irregularly but monotonously. This
irregular increase of the number corresponds to the accidental escape of random walkers from
the potential well, and the slow-down in the increase corresponds to the wandering of random
walkers inside the potential well. This behavior can be understood by the smallness of the
vertex degrees near the boundary of the potential well, for small vertex degree on the boundary
means a few number of edges incident to vertices inside the potential well.
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Figure 5. Time evolution of the network in a 2D squared lattice when pd is 0. (a) Changes
of the number of vertices with created edges. Each plot corresponds to the number of random
walkers, w = 1, w = 2, w = 4 and w = 8, respectively. (b) Changes of the number of created
edges corresponding to (a). (c) Time dependence of the ratio 2E/(M(M − 1)) where E means
the number of created edges and M means the number of vertices with created edges. Note that
M(M − 1)/2 means the maximum number of edges in a graph including M vertices.

On the other hand, the number of created edges indicates a clear linear dependence on
time (see figure 5(b)). This result also contrasts with the 1D case where the increase rate of
new edges becomes small with time. The reason for this slow-down in the increase rate of
edges for the 1D case is because new edges can be created only at the boundary of the nearly
complete subgraph. As the size of the complete subgraph increases, it becomes difficult for
the random walkers to visit the boundary in 1D cases.

In order to consider whether or not the number of edges will be saturated in the potential
well in future as seen in the 1D case, the ratio 2E/ [M(M − 1)] is plotted in figure 5, where E
means the number of created edges and M means the number of vertices with created edges.
As far as the time interval in the figure (0 < t < 20 000) is concerned, the ratio shows
up-and-down motion below values of 0.02. This behavior implies that even if several random
walkers are added, it is difficult to make the ratio 1, indicating a nearly complete subgraph.

As figure 4 implies extreme inequality of edges for vertices, degree distributions for
pd = 0 presented in figure 6 exhibit clear power law ∼k−γ , where k means degree. As
shown in the figure, the exponent γ is set within the range γ ∼ 1–2, which is dependent on
the accidental movements of random walkers. The power law is probably supported by the
frequent creation of edges around the origin by the return of random walkers and the increase
in vertices with small degree caused by the easy escape of random walkers from the potential
well. This effect cannot be found in 1D cases.

4. Maintenance of a nearly complete subgraph for a small pd

In the 1D case, if the extinction probability pd is sufficiently small, the nearly complete
subgraph explained in section 2 is maintained to some extent. In order to know the rate of
spread of the nearly complete subgraphs, it is useful to consider the case for pd = 0. Let
the number of vertices that constitute the nearly complete subgraph be M, and the number
of walkers be w. If a nearly complete subgraph is formed at a given time, the existence
probability of a random walker at two end points of the nearly complete subgraph is 2w/M .
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γ = 1. 502 γ = 1. 752 
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γ = 1. 867 
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γ = 1. 242 

(a) (b) 

(c) (d ) 

Figure 6. Log–log plots of degree distribution at t = 20 000 time steps for various numbers of
walkers when pd = 0. (a) w = 1, (b) w = 2, (c) w = 4, (d) w = 8. The function ∼k−γ where k
means degree is fitted to the observed data.

Then the number of new edges created per unit time is roughly estimated as 2w/M , because
the random walkers at the end points may create new edges owing to the incompleteness of
edges at the end vertex. On the other hand, the number of new edges created per unit time
can be estimated by M dM/dt because vertices newly added to the nearly complete subgraph
at the end points per unit time must join other M vertices to maintain the nearly complete
subgraph, and the number of vertices newly added to M per time is dM/dt . (The increase rate
of M is so slow that differentiation of M can be used appropriately.) Therefore we can derive
the next formula which explains the time evolution of a nearly complete subgraph,

M
dM

dt
= A

w

Mα
. (1)

Here we have described the departure from the rough estimation 2w/M by introducing
parameters A and α. Note that equation (1) is valid only when the network evolves maintaining
nearly complete subgraph.

In figure 7, actual time dependence of the number of vertices that constitute a nearly com-
plete subgraph is compared with the solution of equation (1) M = [wA(α + 2)]1/(α+2) t1/(α+2).
The figure shows that the time evolution is well described by adjusting the parameters and
an easy selection of the parameters like A = 2, α = 1 yields slightly smaller values than the
actual number. But the difference may not be as great, considering that 200 000 time steps
have passed. At least the time dependence M ∼ t1/3 has fairly good agreement with the
observation.

When pd has a positive value, extinction of edges occurs inside the nearly complete
subgraph. Let the sum of all strengths on edges in the complete subgraph be ‘R’. Since
the addition of R per unit time 2w is always larger than the new creation of edges in the
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Figure 7. Time dependence of the number of vertices that constitute a nearly complete subgraph
for the 1D case when pd = 0, (a) w = 8 and (b) w = 16. The parameters are calculated as
A = 2.24, α = 0.99 in (a) and A = 1.67, α = 0.89 in (b).
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Figure 8. Time evolution of a nearly complete subgraph for small pd. (a) Number of vertices
with created edges M versus extinction probability pd for each time. Spatial degree distribution
for pd = 0.0024, (b) t = 40 000 and (c) t = 20 0000.

complete subgraph per unit time, 2w must be at least larger than subtraction of R per unit
time MC2pd = M(M − 1)pd/2 � M2pd/2 to keep the nearly complete subgraph. Therefore
the necessary condition for maintaining a nearly complete subgraph is

M < 2(w/pd)
1/2. (2)

In figure 8(a), plots of M versus pd are presented for each time t = 5 000, 10 000,

20 000, 40 000, 80 000 and 160 000. This figure shows that, as long as condition (2) is
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valid, the time evolution of a nearly complete subgraph does not depend on values of pd as
much. In other words, time evolution even when pd has a finite value can be described by
equation (1). However, figure 8(a) shows that the increase rate of M is considerably suppressed
after M becomes large enough to break condition (2). One example of such a slow-down is
indicated in figures 8(b) and (c), where the nearly complete subgraph formed at t = 40 000
was hardly damaged after 160 000 time steps.

The slow-down of the increase rate of M can be explained intuitively by considering
balances between the creation and extinction of edges at the boundary of nearly complete
subgraphs. The mean decrease rate of edges is given by a product of number of edges with
strength 1 and pd, so that the mean decrease rate of edges at the two end points of a nearly
complete subgraph can be expressed as 2BMpd where B means the ratio of number of edges
with strength 1 at the end vertices of the subgraph to M. Since the creation of edges at the
end vertices is expressed by the right-hand side of (1), we can derive the condition for the
slow-down of the spread of a nearly complete subgraph as the formula Aw/Mα < 2BMpd.
By substitution of 2 and 1 for A and α,

M > (w/Bpd)
1/2 (3)

is obtained as the condition for the slow-down in the spread. Although B is an unknown
positive parameter up to 1, it should be noted that there is no difference between notations
on the right-hand side of (2) and (3) especially when B is 0.25. Condition (3) should be
satisfied, that means B should be over 0.25, when the nearly complete subgraph is stretched
as far as possible, because most of strength of edges is expected to decrease to about 1 in such
a stretched nearly complete subgraph. However, this discussion cannot be applicable after the
nearly complete subgraph is considerably damaged. As pd tends to be large, nearly complete
subgraphs are damaged easily after the breaking of condition (2).

5. Maintenance of the power-law distribution for a small pd in the 2D case

A balance of new creation and extinction of edges naturally leads to the stationary size of
the formed subgraph. In figures 9(a) and (b), the number of vertices with created edges M
and the number of created edges E on a 2D lattice when pd = 0.0004 are illustrated for
various numbers of random walkers w. It is observed that the number of created edges is
roughly proportional to w (figure 9(b)) regardless of time. But the number of vertices with
created edges is not proportional to w especially in the initial time interval (figure 9(a)). The
departure from the proportionality can be explained intuitively by the cohesion behavior of
random walkers at an early stage, which is illustrated in figure 9(c). In the figure, six out of the
eight walkers were still wandering in an area including the origin, although 40 000 time steps
have passed. This cohesion behavior can be understood by the fact that a walker is able to
move through edges created by another walker’s movement. This multiplier effect is expected
to strengthen as w increases. The resulting network is illustrated in figure 9(d). It should
be noted that created edges can remain only in the area where the walkers stayed recently.
In other words, edges cannot survive in the area where the walkers have left. Therefore
figures 9(c) and (d) are similar to each other.

Even when w is large, walkers starting from the same point begin to disperse after a
considerable time. So the observation of networks formed by one walker is useful even when
discussing network formation by a number of walkers. Figure 10 concerns the time evolution
of the network formed by one walker. One characteristic structure is the existence of highly
connected vertices joining each other in a certain area like a community. Figure 10(a) presents
such a cluster constructed by the highest 3% degree in all vertices with created edges. It
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(a) (b)

(d )(c)

Figure 9. Time evolution of networks on a 2D lattice when pd = 0.0004. (a) Changes in the
number of vertices with created edges. Each plot corresponds to the number of random walkers,
w = 1, w = 2, w = 4, w = 8 and w = 16, respectively. (b) Changes in the number of created
edges. (c) Traces of eight random walkers observed in a time interval 35 000 < t < 40 000.
(d) The resulting network formed at t = 40 000.

should also be observed that the cluster has several edges incident to the outside, which bound
random walkers to the subgraph. Note that without the frequent arrival of random walkers, the
highly connected cluster disappears due to the continuous extinction of edges. In figure 10(c)
the vertices with the highest 3% degree at t = 20 000 can keep their edges in about one
thousand time steps, and sometimes can recover edges in several thousand time steps. But
the cluster was found to lose edges without recovering after a certain period passed. Within
the period of disappearance of the degree-rich area created at t = 20 000, a new cluster of
highly connected vertices came into existence as indicated in figure 10(b), although they will
disappear like the previous one.

The degree distribution for this case exhibits a power law with an exponent of about
3 (figure 10(d)) indicating faster decay than for the case of pd = 0. Large degree in
the distribution is supported by the cluster of highly connected vertices. The capacity of
the cluster to keep edges and random walkers obviously determines the stability of highly
connected vertices. So it is natural that the power-law exponent becomes larger than the case
of pd = 0 where degree-rich areas can survive permanently.

For cases with more than one random walker, the network evolution consists of some
stages. In the first stage where the number of created edges increases with time (see
figure 9(b)), the degree distribution exhibits a power law with exponent about 2 (figure 11(a))

11



J. Phys. A: Math. Theor. 41 (2008) 235005 N Ikeda

-50 -30 -10 10 30 50
-110

-90

-70

-50

-30

-10

10

30

x

y

-50 -30 -10 10 30 50

-110

-90

-70

-50

-30

-10

10

x

y

20000 30000 40000 50000 60000
0

10

20

30

40

time

D
eg

re
e

0 10 20 30 40 50
0

100

200

300

400

Degree

N
um

be
r 

of
 v

er
tic

es

10 1
10 0

10 1

10 2

Mean value
t = 60,000

3 % 
highest
degree
at 20,000.

3 % 
highest
degree
at t = 60,000

3 % 
highest
degree
at t = 20,000

(b)

(c)

(a)

(d )

γ = 2.99
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which has no considerable difference from the cases of pd = 0. This is because all walkers
wander around the starting point. Such similarity in initial time intervals can be seen for the
1D case as shown in the previous section.
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In the next stage, the cluster of highly connected vertices around the origin begins to
collapse because of the limitation of increase of edges (see figure 9(b)) by the extinction
of edges and the diffusion of random walkers. The behavior of the collapse is illustrated
in figure 12. At t = 40 000, despite two walkers leaving the origin (see figures 9(c) and
(d)), vertices with the highest 0.5% degree still remain around the origin (figure 12(a)).
The cluster contributes to the existence of degree exceeding one hundred in figure 11(b).
However, several tens of thousands of time steps later, the cluster loses most of its edges,
and vertices with the highest 0.5% degree have distributed discretely corresponding to the
near-independent movements of random walkers (figure 12(c)). At this stage, vertices with
more than one hundred degree disappear owing to the disappearance of the cluster of highly
connected vertices made by multiple random walkers. Finally, the maximum vertex degree
is reduced until the same value of the maximum degree for one walker’s case. The degree
distribution will therefore be similar to a one-walker case except there is a cut-off of the
power-law regime, although slightly larger vertex degree than the one-walker case may exist
because of accidental encounter of random walkers.

6. Collapse of the cohesion

Although it is obvious that sufficiently large pd leads to separation and emigration of formed
subgraphs by the near-independent movements of random walkers, it takes a long time
generally to observe such a breakup as seen in figures 2(e) and (g). In this section, in
order to examine the process leading to the breakup of connected subgraph including all
random walkers, a life time of highly connected vertices and number of vertices within i steps
from the highest connected vertex Ni are calculated, where the life time τ is defined by fitting
the function exp(−t/τ ) to the actual time dependence of the mean vertex degree of vertices
with a few % largest degree at a given time.

First let us take the 1D case. In figure 13, Ni/M where i = 1, 2 and 3 and τ for networks
on 1D lattice are plotted with respect to pd. Note that formed networks under these conditions
have broad degree distribution like in figures 3(b) and (c). Figure 13(a) shows that almost
all vertices with created edges are included within three steps from the maximum connected
vertex and Ni/M’s are nearly constant regardless of values of pd. This structure has the
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advantage of maintaining all edges in one connected subgraph, because random walkers can
easily reach all vertices with created edges and strengthen their edges. On the other hand,
figure 13(b) shows that τ is easily reduced by an increase of pd. These features indicate that
there is the rise and fall of edges in a connected subgraph in which all pairs of vertices are
connected by a small distance. Figures 13(c) and (d) show an example of such a connected
subgraph at t = 200 000 and at t = 400 000 where the degree-rich area has moved in the
time interval. The sudden decrease in Ni/M with respect to pd in figure 13(a) corresponds
to escapes of random walkers from the potential well (see figure 2(e)), while decrease of τ in
figure 13(b) is considered a premonitory sign of such a breakup of the connected subgraph.

Our calculation also provides the next empirical rule for the number of created edges E
after sufficient time has passed,

E � (2
√

w/pd)
2/2 = w(2

√
1/pd)

2/2 = 2w/pd. (4)
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time dependence of created edges. The number approaches a stationary behavior regardless of
pd. (b) Mean values of E in 180 000 < t < 200 000 are compared with the empirical rule (4) for
various pd.

Time dependences of E are plotted in figure 14(a) and the mean value of E in
180 000 < t < 200 000 is compared with the empirical rule (4) for various pd in figure 14(b).
Figure 14(b) shows that the rule (4) is valid especially when pd is small. It should be noted
that the value in (4) is equal to the number of edges that constitute the maximum nearly
complete subgraph given by equation (2). Therefore figure 14(a) indicates a stagnation in the
increase of edges after the collapse of nearly complete subgraphs. Furthermore, 2(1/pd)

1/2 in
(4) means the maximum number of vertices for maintaining a nearly complete subgraph only
by one walker’s movement. Therefore the empirical rule (4) also means that the capacity to
keep edges by w walkers is given by the sum of the number of edges of a nearly complete
subgraph by one walker’s movement 2/pd. Although a complete subgraph is not actually
formed here, walkers can keep a similar capacity to create edges by the cooperation of many
walkers in a compact subgraph discussed above. On the other hand, our observation shows
that the number of vertices that constitute the connected subgraph can continue increasing
after the collapse of nearly complete subgraphs until over 2w(1/pd)

1/2. Increase of pd which
decreases 2(1/pd)

1/2 to a small number can be regarded as an approximate criterion for the
collapse of a connected subgraph, because small 2(1/pd)

1/2 means reduction of the number
of vertices that one walker can influence.

The coefficient of w/pd in equation (4) can be interpreted by the following discussion.
The time evolution of E is considered to follow the next equation,

dE/dt = c1w − c2pdE, (5)

where c1 is the probability of the creation of edges by one walker’s movement per one time
step and c2 is the ratio of the number of edges of strength 1 to E. Both values fluctuate with
time irregularly. But after considerable time has passed, dE/dt can be regarded as 0, and
c1 and c2 as constants by ignoring small fluctuations with time. Therefore E can be roughly
estimated as

E = c1w/c2pd. (6)

Although c1 is 0 in a complete subgraph, c1 increases with time up to 1 as the mean vertex
degree decreases with time. The decrease in the coefficient of w/pd from 2 by the increase in
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pd when w = 1 and t = 40 000 . (b) Time dependence of Ni/M for a network formed by eight
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pd shown in figure 14(b) therefore directly means an increase in c2. Increase of c2 can also be
considered a premonitory sign of the breakup of one connected subgraph, because the increase
in c2 should naturally weaken tolerance to the extinction of edges.

For the 2D case, as mentioned in the previous section, once an edge-rich area has been lost,
random walkers cannot come back there easily and the formed subgraph begins to emigrate.
The results of the calculation of Ni/M’s for the 2D case are consistent with this observation.
Figure 15(a) presents changes of Ni/M’s at t = 40 000 with respect to various pd for networks
formed by one walker in a 2D lattice. This calculation shows that N4/M is only a 70% even
when pd = 0, which means that there is large fraction of vertices far from the vertex with
the highest degree. The existence of vertices far from the vertex with the highest degree frees
random walkers from highly connected vertices. This result is different from that for 1D cases
where all vertices in the subgraph rather than only some of the vertices are sharing all walkers.

Figure 15(b) presents changes of Ni/M’s with time for a network formed by eight walkers
in a 2D lattice when pd = 0.0004. The figure clearly indicates the process of the network
evolution discussed in the preceding section. In the first stage in which all walkers are bound
to the origin, Ni/M’s are large, but decreases with time (t < 20 000). In the second stage
in which the cluster of highly connected vertices around the origin remains, but begins to
collapse slowly, Ni/M’s keep larger values (20 000 < t < 60 000) than the values of Ni/M’s
of one walker. Finally, most walkers leave the origin, and Ni/M’s decrease to as small as that
of one walker (60 000 < t).

7. Summary and discussion

We have investigated networks formed by a diffusion process of random walkers leaving
behind edges according to the rules explained in section 1. Calculations are carried out under
the condition that all walkers spread from the same vertex in a 1D or a 2D squared lattice.
These initial lattices where the walkers can wander provide a geographical consideration to
the network, that is, edges joining nearest-neighbor vertices in the initial lattice will never
be extinct and vertices far from each other cannot be joined without transports of random
walkers between them. The creation and extinction rule of edges expresses a situation where
connections between elements of a system grow or degenerate according to the degree of

16



J. Phys. A: Math. Theor. 41 (2008) 235005 N Ikeda

prosperity of random transports which depart from one point. However, the random transports
described by random walkers’ movements are extreme in that the transports do not exhibit
birth and death, and movements of random walkers are always restricted by the last movement
and the local structure around the walker. Prominent suppression of the spread of random
walkers at the boundary of a nearly complete subgraph in a 1D lattice is a typical example
of the restrictions on movements of random walkers by local structure of networks. As a
result, the diffusion process of random walkers and resulting networks greatly depend on the
dimension of initial lattice.

For 1D cases, we developed some formulae for describing the time evolution of formed
subgraphs. As long as pd is sufficiently small, a nearly complete subgraph is formed by the
random walkers starting from the same vertex. The increase of the number of vertices of
nearly complete subgraph M can be described by the formula M = (6wt)1/3 until M exceeds
the value 2(w/pd)

1/2 that means the condition for collapse of nearly complete subgraphs. It
takes a very long time to transit from a complete subgraph to a subgraph with broad degree
distribution especially when pd is small. Connected subgraphs with broad degree distribution
formed after collapse of the complete subgraph keep about 2w/pd edges. The expression
E ∼ w/pd can be derived by a simple consideration for the time evolution of a number of
created edges, where the coefficient of w/pd can be interpreted as a parameter that shows
a premonitory sign of breakup of one connected subgraph. The connected subgraphs can
be stabilized by small vertex–vertex distances between all pairs of vertices, because such a
structure enables all vertices to keep random walkers without distinction. As pd tends to large,
the complete subgraph easily transits to a connected subgraph with broad degree distribution,
and shortened life time of highly connected vertices is observed. In this situation, there is a
dynamical local rise and fall of edges in the connected subgraphs. Finally, when the value
2(1/pd)

1/2 is a small number, the connected subgraph becomes easy to break and subgraphs
begin to emigrate corresponding to near-independent movements of walkers.

For 2D cases, the power-law distribution of vertex degree is observed especially when
pd is 0. The power-law exponent γ can take values in the range 1 < γ < 2 corresponding
to the unpredictable movements of random walkers. The power law can also be observed
for a positive pd. Especially in an early stage of network evolution, there is only a slight
difference from the case of pd = 0. However, the exponent increases with time until about
3 even when pd is very small. The formed network structure is characterized by clusters of
highly connected vertices which contribute to a large degree region in the degree distribution.
When pd is 0, the cluster of highly connected vertices can survive permanently. But when pd

is not 0, the cluster of highly connected vertices collapses over a long time. Collapse of cluster
of highly connected vertices must be related to the fact that the number of vertices that can
be reached from the highest connected vertex in a few steps is only limited in several tens of
per cent of all vertices with created edges. As a result, some vertices with large degree allow
random walkers to escape to vertices with small degree, while in the 1D case, walkers-sharing
in all vertices with created edges controls the dispersion of walkers. Although the addition of
random walkers can somewhat stabilize the cluster of highly connected vertices by increasing
of Ni/M , the breaking out of the cluster is beyond repair.

It should be reaffirmed that our calculation was carried out for cases where all random
walkers start from the same vertex. It is unlikely that random walkers far from each other
spontaneously gather and form subgraphs reported in this paper. In this sense, some networks
observed in this paper can be considered to be in a kind of metastable state. A case examined in
our previous paper [21] where 100 walkers were confined in 500 aliened vertices is considered
as a study for dense random walkers, since 100 walkers can spread in a connected subgraph
wider than 500 vertices.
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A common interpretation between the 1D and 2D cases is that the formed network is a
result of the statistics of the past movements of random walkers although only a few number
of walkers can be observed at one time. As a result, an edge-rich area where the random
walkers wander to can be easily created in both dimensions. However, only the random
removal of edges from the edge-rich area will never lead to the results obtained in this paper,
for random removal of edges from a nearly complete graph is equivalent to the random linking
of vertices without edges. Random transportation which accompanies the new creation of
edges is indispensable for acquiring a broad degree distribution, since random walkers tend to
provide new edges to edge-rich areas more than to edge-poor areas. Random walkers in 2D
cases have another feature where they can sometimes leave edge-rich areas even when pd = 0.

More realistic description of transports in networks may be a theme to be studied in
the future, for the transports described by random walkers are extreme concepts as previously
mentioned. The proposal of other transportation models may uncover other features of network
evolution.
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